What Happens When an Electrical Circuit Overloads ...

First Post  
pysong 22 ÁԶعÒ¹ 2566 , 10:22:26
What Happens When an Electrical Circuit Overloads



If you’ve ever plugged in one too many holiday lights, switched on a vacuum, or cranked up a space heater only to have the lights or appliance suddenly shut off, you’ve created an electrical circuit overload. The shutdown was triggered by the circuit’s breaker (or fuses) in your home’s service panel. And while circuit breakers are reliable and do a good job preventing house fires due to overloads, the safest strategy is to manage your electricity usage to prevent overloads in the first place.Get more news about Overload Protection Socket Supplier,you can vist our website!

How Do Electrical Circuit Overloads Work?
Electrical circuits are designed to handle a limited amount of electricity. Circuits are made up of wiring, a breaker (or a fuse, in old wiring systems), and devices (such as light fixtures, appliances, and anything plugged into an outlet). The electricity usage of each device (when running) adds to the total LOAD on the circuit. Exceeding the rated load for the circuit wiring causes the circuit breaker to trip, shutting off the power to the entire circuit.

If there were no breaker in the circuit, an overload would cause the circuit wiring to overheat, which could melt the wire insulation and lead to a fire.1 Different circuits have different load ratings so that some circuits can provide more electricity than others. Home electrical systems are designed around typical household usage, but there’s nothing to prevent us from plugging in too many devices on the same circuit. However, the more you know about the layout of your home’s circuits the more easily you can prevent overloads.
Mapping Your Home’s Circuits
The first step to preventing electrical circuit overload is to learn which circuits power which devices. When you’ve mapped the basic circuit layout, you can calculate the safe load rating of each circuit to get a sense of how many things you can operate on that circuit. For example, if your kitchen lights dim when you turn on your toaster oven (a power-hungry appliance), that tells you that the toaster and lights are on the same circuit (even though they shouldn’t be) and that you’re close to maxing out the circuit capacity. Mapping the circuits also can tell you if there’s a need for new circuits to meet the normal demands of the household.

Mapping circuits are simple (if repetitive): Get a notepad and a pencil. Open the door to your home’s service panel (breaker box) and turn off one of the breakers with the number 15 or 20 stamped on the end of the breaker switch. (Don’t bother with the breakers stamped with 30, 40, 50, or higher numbers; these are high-voltage circuits for appliances like electric ranges, water heaters, and clothes dryers, and you’re not plugging ordinary appliances into these circuits.) Note on the pad where the circuit lies in the panel so you can identify it later.

Next, walk through the house and try all the lights, ceiling fans, and plug-in appliances. Write down everything that doesn’t have power, and note the room it is in. Also, test each outlet with a voltage tester or receptacle tester, or even a plug-in light or lamp, recording all that don’t work. You don’t necessarily have to go through the entire house for each circuit. And if your electrician was thorough, there may be helpful labels next to the breakers, indicating the circuit areas (“Southeast bedroom,” “Garage lights,” etc.). But for accurate mapping, you should test each area broadly because circuits can have oddball members—a microwave on a hallway lighting circuit, for example.